Stress Corrosion Cracking of Cold-Rolled Austenitic Stainless Steels in NaCl Solution

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed Cracking of Metastable Austenitic Stainless Steels after Deep Drawing

In metastable austenitic stainless steels, strain-induced martensitic transformation during plastic deformation enhances work hardening of the material, increasing its strength and in some cases also ductility.1,2) The presence of α’-martensite, however, may increase the susceptibility of these materials to hydrogen embrittlement phenomena, for example delayed cracking.3–6) Delayed cracking can...

متن کامل

Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl₂ solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless ste...

متن کامل

A Continuum Damage Model for the Stress Corrosion Cracking of Austenitic Stainless Steel

In the present work, the mechanical behavior of stress corrosion cracking phenomenon is described. Such phenomenon presents strong complexity due to metallurgic and electrochemical aspects. A methodology for modeling both SSR (Slow Strain Rate) and CL (Constant Load) tests based upon thermodynamics of continuum solids and elastoplastic damage is proposed. In this macroscopic approach, besides t...

متن کامل

Microstructure and Mechanical Properties of Cold Rolled AISI 304L and 316L Austenitic Stainless Steels during Reversion Annealing

Microstructural evolutions during annealing of cold rolled AISI 304L and AISI 316L stainless steels were studied. Cold rolled AISI 304L alloy was fully martensitic but cold rolled AISI 316L alloy was partially martensitic due to the higher stability of the austenite phase in the latter. During continuous heating to elevated temperatures, the complete reversion of strain-induced martensite at 75...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Japan Institute of Metals and Materials

سال: 1961

ISSN: 0021-4876,1880-6880

DOI: 10.2320/jinstmet1952.25.10_667